Permanent Antistatic Additives PELESTAT/PELECTRON

PELECTRON/PELESTAT impart permanent antistatic properties to resins such as ABS, PP, and PE.

<Features>

- ✓ Due to it's good dispersivility to base resins, it doesn't affect physical properties and moldability of base resins.
- **✓** Humidity independence.
- ✓ Superior Cleanness (Non bleeding out type).
- ✓ Can lower surface resistivity to 10^8-10^9 [Ω /sq.] level. (in case of PELECTRON)

Purpose to Prevent Static Charge

Surface Resistivity $(\Omega/\text{sq.})$ **10**¹⁴ **Insulative 10** ¹³ **10**¹² For repelling dust and dirt **10**¹¹ **Antistatic** For protection from electric shock **10**¹⁰ **10** 9 For protection of damage to **Not Charged** electronic devices **10**8 **10** ⁷ **Conductive 10**⁶

Application

■ Repelling dust and dirt

(Surface Resistivity : 10^{12} ($\Omega/sq.$))

< For electric appliances, automobile interior component >

Dust box of cleaner
Base resin: transparent-ABS
(Injection molding)

Components of air conditioners
Base resin: HIPS
(Injection molding)

■ Protection from electric shock

(Surface Resistivity : 10 $^{10}\sim$ 10 11 ($\Omega/$ sq.))

<For explosion-proof products>

Explosion-proof helmet
Base resin: PP (Injection molding)

Explosion-proof flashlight
Base resin: PA (Injection molding)

■ Protection of damage to electronic devices (Surface Resistivity: $10^8 \sim 10^9$ (Ω/sq.))

<For electronic parts package>

Tray for IC chips, precision parts
Base resin: ABS, PP, m-PPE
(Injection molding)

Package for electronic parts, precision parts Base resin: PE (blow molding)

LCD tray
Base resin: PP
(extrusion molding→vaccum molding)

Antistatic Effect

Without PELECTRON

After molding

With PELECTRON

Surface Resistivity: $10^{16} \Omega/\text{sq}$. Surface Resistivity: $10^{12} \Omega/\text{sq}$.

Kept in a room for 3 months

Repelling dust and dirt because of low surface resistivity

Basic Structure of PELECTRON/PELESTAT

 $-\left\{\begin{array}{c} (PEO Segment) - (Hard segment) \\ n \end{array}\right\}$

Antistatic property (Soft segment)

- Dispersibility to the resin
- Maintain mechanical properties to resins (PP / 6Ny / 12Ny)

Mw=ca.40,000

Soft segment

Antistatic properties based on continuous phase of Polyether.

Hard segment

Elastomeric properties based on cohesive power of hard segment.

PELECTRON forms streaky conductive networks in the surface layer of molded piece.

Processing Flowchart

Normal molding method (Injection, Extrusion, etc.)

Surface Resistivity performance

<Example of the application to LDPE extruded film>

Effects on Physical Properties of Resin

Item		Measuring method	LDPE/PELECTRON PVL=90/10	LDPE
Surface Resistivity ¹⁾	Ω/sq.	ASTM D 257	1 × 10 ¹¹	>1016
MFR(190°C, 21.18N)	g/10min	ASTM D 1238	3	2
Tensile strength	МРа	ASTM D 638	21	20
Tensile strength at break	%	ASTM D638	590	580
Haze	%	JIS K 7105	35	34
Total light transmittance	%	JIS K 7105	86	86

^{1) 23°}C(73°F), 50% R.H.

Testing Methods

PELECTRON PVL and LDPE were dry-blended and molded using sheeting equipment[extruder (20 mmØ, L/D=25, revolution rate: 50 rpm), die (120 mm, die temp.: approx. 200oC(392oF)] into sheets 100 μm (approx. 3.9 mils).

Comparison data to Low-Molecular-Weight Antistatic Additives

	PELESTAT PELECTRON	Low-Molecular- Weight Antistatic Additives
Surface Resistivity (Ω/sq.)	$10^8 \sim 10^{12}$	$10^9 \sim 10^{12}$
Dosage (wt%)	5 ~ 25	0.2 ~ 2
Antistatic Sustainability	0	×
Humidity Independence	0	×
Antistatic at Directly after molding	0	×

Comparison to Low-Molecular-Weight Antistatic Additives

PELESTAT / PELECTRON

PELECTRON forms streaky conductive networks in the surface layer.

PELECTRON remains in the surface layer even when the product is wiped or water-washed.

Low-Molecular-Weight Antistatic Additives

Continuous layer with absorbed water

Directly after molding

A few hours later

Easily removed by wiping or washing.

Cloth

The low-molecular-weight antistatic additives form a continuous layer with absorbed water on the surface.

Antistatic Substantivity

Testing Methods

Surface of the test pieces was wiped with a water-soaked cotton cloth. The test pieces were dried in a vacuum (130 Pa) at 70oC for 2 hours and kept at 23oC, 50 % R.H. for 24 hours. Surface resistivity was measured by using megohmmeter.

Humidity Independence

Testing Methods

The test pieces kept at 23oC (73oF) under predetermined humidity for 24 hours. The surface resistivity was measured by using a megohmmeter.

Application

Protection from

electric shock

Floor mat

Protection of malfunctions

Explosionproof helmet

PELESTAT Standard grades

	No.1 PELESTAT 300	No.2 PELESTAT 230	No.3 PELESTAT NC6321	No.4 PELESTAT NC7530
Basic structure	PP-b-PEO	PP-b-PEO	6Ny-b-PEO	6Ny-b-PEO
Melting point (°C)	135	163	203	176
MFR (g/10min)	30 (190°C,21.18N)	14 (190°C,21.18N)	20 (215°C,21.18N)	10 (190°C,21.18N)
Refractive index	1.49	1.49	1.51	1.53
Surface resistivity *1(Ω/sq.)	1×10 ⁸	5×10 ⁷	1×10 ⁹	2×10 ⁹
Recommended Molding method	Injection	Extrusion	Injection Extrusion	Injection Extrusion
Adapted Thermoplastic resins	PP, PE etc.	PP, PE HIPS etc.	ABS, PC/ABS, PBT etc.	transparent- ABS, MS etc.
Features	-	-	-	High refractive index

^{*1 : 23℃(73°}F), 50% R.H.

PELECTRON Standard grades

	No.1 PELECTRON PVL	No.2 PELECTRON AS	
Basic structure	PP-b-PEO	PA6-b-PEO	
Melting point (°C)	135	195	
MFR (g/10min)	15 (190°C, 21.18 N)	30 (215°C, 21.18 N)	
Refractive index	1.49	1.50	
Surface resistivity *1(Ω/sq.)	3×10 ⁶	4×10 ⁶	
Recommended Molding method	Injection Extrusion	Injection Extrusion	
Adapted Thermoplastic resins	PP, PE HIPS etc.	ABS, PC/ABS, PC etc.	
Features	Low resistivity	Low resistivity	

*1 : 23℃(73°F), 50% R.H.